software engineering 62

[Machine Learning] ์ค€์ง€๋„ํ•™์Šต (Semi-supervised learning)

์ค€์ง€๋„ํ•™์Šต (Semi-supervised learning) ๋จธ์‹ ๋Ÿฌ๋‹์˜ ํ•œ ์ข…๋ฅ˜๋กœ ์ง€๋„ํ•™์Šต๊ณผ ๋น„์ง€๋„ํ•™์Šต์˜ ๋‘ ๊ฐ€์ง€๋ฅผ ์กฐํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ• ๋‘ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹ค๋ฅธ ํ•˜๋‚˜์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•จ ex) ๋ถ„๋ฅ˜ : unlabled ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ ex) ํด๋Ÿฌ์Šคํ„ฐ๋ง : ํด๋ž˜์Šค ์ •๋ณด๋กœ๋ถ€ํ„ฐ ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํด๋Ÿฌ์Šคํ„ฐ๋ง ์„ฑ๋Šฅ ํ–ฅ์ƒ Semi-supervised learning์€ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ์ ์šฉ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Œ Classifier๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ labeled ๋ฐ์ดํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ Labeled ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•œ ๋น„์šฉ์ด ํฌ๊ฑฐ๋‚˜ ์–ด๋ ค์šด ๊ฒฝ์šฐ ์ค€์ง€๋„ํ•™์Šต ๊ฐ€์ •์‚ฌํ•ญ Smoothness ๊ฐ€์ • ๋‘ ๊ฐ’ x, x1 ์ด input space์—์„œ ๊ฐ€๊น๊ฒŒ ์žˆ์œผ๋ฉด ํ•ด๋‹นํ•˜๋Š” y,y1๋Š” ๊ฐ™์€ labe..

[Machine Learning] ๋”ฅ๋Ÿฌ๋‹์˜ ๋น„์ง€๋„ํ•™์Šต

Autoencoder ์˜ ๊ตฌ์กฐ Input๊ณผ output์˜ ๊ฐ’์ด ๊ฐ™์•„์ง€๋„๋ก ํ•™์Šตํ•˜๋Š” ๋‰ด๋Ÿด๋„คํŠธ์›Œํฌ Autoencoder ์˜ ์œ ์šฉ์„ฑ๊ณผ ํ•™์Šต๋ฐฉ๋ฒ• output์„ input๊ณผ ์™„์ „ํžˆ ๋™์ผํ•˜๊ฒŒ ๋ณต์›ํ•˜๋Š” ๋‰ด๋Ÿด๋„คํŠธ์›Œํฌ๋Š” ์œ ์šฉํ•˜์ง€ ์•Š์Œ => ์˜คํžˆ๋ ค ์™„์ „ํžˆ ๋™์ผํ•˜๊ฒŒ ๋ณต์›๋˜์ง€ ์•Š๋„๋ก ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•จ Autoencoder์— ์ œํ•œ์กฐ๊ฑด์„ ๋‘์–ด input์— ๊ทผ์‚ฌํ•˜๊ฒŒ ๋ณต์›๋˜๋„๋ก ํ•™์Šต์‹œํ‚ด ์ด๋ฅผํ†ตํ•ด, autoencoder๊ฐ€ ๋ฐ์ดํ„ฐ์˜ ์ค‘์š”ํ•œ ์†์„ฑ(property)๋งŒ ํ•™์Šตํ•˜๋„๋ก ํ•จ ์ „ํ†ต์ ์œผ๋กœ๋Š” autoencoder๋ฅผ dimension reduction์„ ์œ„ํ•ด ์‚ฌ์šฉ ์••์ถ•๋œ code๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ €์ฐจ์›์—์„œ ํ‘œํ˜„ํ•œ ๋ฒกํ„ฐ PCA์˜ ์ฐจ์› ์ถ•์†Œ์™€ ์œ ์‚ฌํ•˜๋‚˜ ๋น„์„ ํ˜•์„ฑ์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์–ด ๋” ์œ ์šฉํ•  ์ˆ˜ ์žˆ์Œ Multilayer Neural Network..

[Machine Learning] ํด๋Ÿฌ์Šคํ„ฐ๋ง (Clustering)

ํด๋Ÿฌ์Šคํ„ฐ๋ง (Clustering) ์„œ๋ธŒ๊ทธ๋ฃน(subgroup)์ด๋‚˜ ํด๋Ÿฌ์Šคํ„ฐ(cluster)๋กœ ๋ถˆ๋ฆฌ๋Š” ๋น„์Šทํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๊ทธ๋ฃน์„ ์ฐพ๋Š” ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ• ์„œ๋กœ ๋น„์Šทํ•œ(๊ฐ€๊นŒ์šด) ๋ฐ์ดํ„ฐ๋“ค์ด ๊ฐ™์€ ๊ทธ๋ฃน(ํด๋Ÿฌ์Šคํ„ฐ)์— ํฌํ•จ๋˜๋„๋ก ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ๋น„์Šทํ•˜๋‹ค ๋˜๋Š” ๋‹ค๋ฅด๋‹ค ๋ผ๋Š” ๊ธฐ์ค€๊ณผ ๊ฐœ๋…์„ ๋ช…ํ™•ํžˆ ํ•ด์•ผํ•จ ์ด ๊ธฐ์ค€์€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ๋ฐ์ดํ„ฐ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง Market segmetation ์˜ˆ์ œ ๋ฐ์ดํ„ฐ : ๋งŽ์€ ์‚ฌ๋žŒ์— ๋Œ€ํ•œ ๊ฐ€๊ณ„์†Œ๋“, ์ง์—…, ์ตœ๊ทผ๊ฑฐ๋ฆฌ ๋„์‹œ ๋“ฑ์˜ ์ •๋ณด ๋ชฉํ‘œ : ํŠน์ •ํ•œ ๊ด‘๊ณ ํ˜•ํƒœ ๋˜๋Š” ํŠน์ •์ƒํ’ˆ์˜ ๊ตฌ๋งค์— ๋” ๋ฏผ๊ฐํ•œ ๊ณ ๊ฐ ๊ทธ๋ฃน์„ ์‹๋ณ„ํ•ด๋‚ด๋Š” ๊ฒƒ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ• K-means clustering : ํด๋Ÿฌ์Šคํ„ฐ์˜ ์ค‘์‹ฌ(centroid)์„ ๊ธฐ์ค€์œผ๋กœ ๊ณ„์‚ฐํ•˜์—ฌ, ๋ฐ์ดํ„ฐ์—์„œ ๋ฏธ๋ฆฌ ์ •ํ•ด์ง„ ์ˆ˜๋งŒํผ์˜ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ์ฐพ๋Š” ๋ฐฉ๋ฒ• Hierarchical c..

[Machine Learning] ๋น„์ง€๋„ ํ•™์Šต, Principal Components Analysis

์ง€๋„ ํ•™์Šต Y(output)๊ฐ€ ์กด์žฌ : dependent variable, response, target, label X(input)๊ฐ€ ์กด์žฌ : independent variable, predictor, feature Regression(ํšŒ๊ท€) ๋ฌธ์ œ์—์„œ๋Š” Y๋Š” ์—ฐ์† ๊ฐ’ : ์ œํ’ˆ ํŒ๋งค๋Ÿ‰, ์•ผ๊ตฌ์„ ์ˆ˜์˜ ์—ฐ๋ด‰ ๋“ฑ Classification(๋ถ„๋ฅ˜) ๋ฌธ์ œ์—์„œ๋Š” Y๋Š” ๋‹จ์†์ ์ธ ๊ฐ’ : spam/email, ๋ถ“๊ฝƒ ์ข…๋ฅ˜ ๋“ฑ N๊ฐœ์˜ training data๋กœ ํ•™์Šต ๊ธฐ๋ณธ์‚ฌํ•ญ ๋ณธ์ ์ด ์—†๋Š”(ํ•™์Šต์— ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜๋˜) test data์˜ output์„ ์ •ํ™•ํžˆ ์˜ˆ์ธก(prediction) ์–ด๋–ค input์ด output์— ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋Š”์ง€ ์ดํ•ดํ•˜๊ณ  ๋ถ„์„(inference) ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•ด๋ณด๊ณ  ๋ฐ˜๋ณต๊ณผ์ •์„ ๊ฑฐ์ณ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ด ๋น„์ง€๋„ ํ•™..

[BigData] ๋น„์ง€๋„ ํ•™์Šต(Unsupervised Learning)

๋น„์ง€๋„ ํ•™์Šต(Unsupervised Learning) ? ์ •๋‹ต ๋ฐ์ดํ„ฐ์…‹์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ์Šคํ…œ์ด ์Šค์Šค๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ• ์ฃผ๋กœ ๋ฐ์ดํ„ฐ๋“ค์˜ ํŠน์ง•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฐ์ง‘ํ™”๋ฅผ ์ˆ˜ํ–‰ ๋ฐ์ดํ„ฐ์˜ ์ฐจ์›์ด ๋†’์„์ˆ˜๋ก ๋ฐ์ดํ„ฐ์— ๋” ๋งŽ์€ ๋…ธ์ด์ฆˆ๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๊ตฐ์ง‘ํ™”์— ์–ด๋ ค์›€์„ ๊ฒช์Œ(์ฐจ์›์˜ ์ €์ฃผ) k-ํ‰๊ท  ์•Œ๊ณ ๋ฆฌ์ฆ˜ (k-means) ์‚ฌ์ „์— ์ •ํ•œ k๊ฐœ์˜ ๊ตฐ์ง‘์œผ๋กœ ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐฉ๋ฒ• ๋น„์ง€๋„ ํ•™์Šต์˜ ์ผ์ข…์œผ๋กœ ๋ ˆ์ด๋ธ”์ด ๋‹ฌ๋ ค ์žˆ์ง€ ์•Š์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๋ ˆ์ด๋ธ”์„ ๋‹ฌ์•„์ฃผ๋Š” ์—ญํ• ์„ ์ˆ˜ํ–‰ ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ฃผ์–ด์ง„ ์ค‘์‹ฌ์ (Centroid)์„ ๊ธฐ์ค€์œผ๋กœ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ๊ตฐ์ง‘์— ํ• ๋‹น ๊ตฐ์ง‘์ด ํ˜•์„ฑ๋˜๋ฉด ์ƒˆ๋กญ๊ฒŒ ํ˜•์„ฑ๋œ ๊ตฐ์ง‘์˜ ์ค‘์‹ฌ์ (Centroid)์„ ๊ธฐ์ค€์œผ๋กœ ๋‹ค์‹œ ๋ฐ์ดํ„ฐ์™€ ์ค‘์‹ฌ์  ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ •ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๊ตฐ์ง‘์„ ํ˜•์„ฑ ํ•œ๊ณ„ : ๊ตฌ ๋ชจ์–‘์˜ ..

[BigData] ํšŒ๊ท€ (Regression)

ํšŒ๊ท€(regression) ? ์ฃผ์–ด์ง„ ์ž…๋ ฅ์˜ ํŠน์ง•์œผ๋กœ๋ถ€ํ„ฐ ์‹ค์ˆ˜(์—ฐ์†ํ˜• ๋ณ€์ˆ˜)๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ํ–‰์œ„ ๋ฐ์ดํ„ฐ ๋ณ€์ˆ˜๋“ค ๊ฐ„์— ํ•จ์ˆ˜๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜์—ฌ ํ†ต๊ณ„์  ์ถ”๋ก ์„ ํ•˜๋Š” ๊ธฐ์ˆ  ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•จ์ˆ˜๋ฅผ ์ถ”์ •ํ•˜์—ฌ, ์˜ˆ์ธก ๊ฐ’๊ณผ ์‹ค์ œ๊ฐ’์˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์ด ํšŒ๊ท€์˜ ๋ชฉํ‘œ ํšŒ๊ท€์˜ ์œ ํ˜• ๋‹จ์ˆœ ์„ ํ˜• ํšŒ๊ท€(Simple linear regression) : ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋‹จ๋ณ€๋Ÿ‰ ๋ชจ๋ธ๋กœ์„œ, ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ํ•˜๋‚˜์ธ ํšŒ๊ท€ ๋ชจ๋ธ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€(Multiple linear regression) : ๋‹ค๋ณ€๋Ÿ‰ ๋ชจ๋ธ๋กœ์„œ, ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ๋‘˜ ์ด์ƒ์ธ ํšŒ๊ท€ ๋ชจ๋ธ MILib ์˜ ํšŒ๊ท€ ๋ชจ๋ธ ์„ ํ˜• ํšŒ๊ท€(Linear Regression) ์ผ๋ฐ˜ํ™” ์„ ํ˜• ํšŒ๊ท€(Generalized linear Regression) ์„ ํ˜•ํšŒ๊ท€๋ถ„์„์—์„œ ๊ฒฐ๊ณผ๋ณ€์ˆ˜๋Š” ์—ฐ์†์ ์ด๋ฉด์„œ ์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด์ง€..

[Machine Learning] SVM (Support Vector Machines)

Binary Classification(two-class classfication) ์ง๊ด€์ ์ธ ๋ถ„๋ฅ˜ ๋ฐฉ๋ฒ• Feature space์—์„œ ๊ณต๊ฐ„์„ ๋‘˜๋กœ ๋‚˜๋ˆ„๋Š”(separate) ํ‰๋ฉด(plane)์„ ์ฐพ์Œ ๋งŒ์•ฝ ๊ทธ๋Ÿฌํ•œ ํ‰๋ฉด์„ ์ฐพ์„ ์ˆ˜ ์—†๋‹ค๋ฉด ๊ณต๊ฐ„์„ ๊ตฌ๋ถ„(seperate)ํ•œ๋‹ค๋Š” ๊ฐœ๋…์„ ๋Š์Šจํ•˜๊ฒŒ ์ ์šฉ ๊ตฌ๋ถ„์ด ๊ฐ€๋Šฅํ•˜๋„๋ก feature space๋ฅผ ํ™•์žฅ (์ถ”๊ฐ€์ ์ธ feature ์ƒ์„ฑ) Maximal Margin Classfier ๋ชจ๋“  separating hyperplane ๊ฐ€์šด๋ฐ ๋‘ class๊ฐ„์˜ margin์„ ๊ฐ€์žฅ ํฌ๊ฒŒ ํ•˜๋Š” separating hyperplane์ด ์กด์žฌํ•จ ์ด hyperplane์„ ์ด์šฉํ•˜๋Š” classfier๋ฅผ Maximal Margin Classfier๋ผ๊ณ  ํ•จ Support Vector Classfier..

[Machine Learning] Aggregating decision trees

Bagging(Bootstrap aggregation) ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•์˜ ๋ณ€๋™์„ฑ(variance)์„ ์ค„์ด๊ธฐ ์œ„ํ•œ ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ decision tree ๋ฐฉ๋ฒ•์— ํŠนํžˆ ์œ ์šฉํ•˜์—ฌ ๋งŽ์ด ์ ์šฉ๋จ -> ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋…๋ฆฝ์ ์ธ ๋ฐ์ดํ„ฐ์…‹์„ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ค์›Œ bootstrap ๋ฐฉ๋ฒ• ์‚ฌ์šฉ OOB(Out-of-Bag Error Estimation) Bagging ๋ฐฉ๋ฒ•์—์„œ๋Š” ์•„์ฃผ ์ง๊ด€์ ์ธ test error ์ถ”์ • ๋ฐฉ๋ฒ•์ด ์กด์žฌ Bootstrap์€ ์ค‘๋ณต์„ ํ—ˆ์šฉํ•˜๋ฏ€๋กœ ํ•˜๋‚˜์˜ bootstrap training data์—์„œ ํ‰๊ท ์ ์œผ๋กœ ๋ณธ๋ž˜(original) ๋ฐ์ดํ„ฐ์˜ 2/3๊ฐ€ ์ƒ˜ํ”Œ๋ง๋จ ๋‚˜๋จธ์ง€ ์ ํ•ฉ์— ์‚ฌ์šฉ๋˜์ง€ ์•Š์€ 1/3์˜ ๋ฐ์ดํ„ฐ๋ฅผ OOB(out-of-bag)์œผ๋กœ ๋ช…๋ช… i๋ฒˆ์งธ ๋ฐ์ดํ„ฐ๊ฐ€ OOB์ธ ๊ฒฝ์šฐ์˜ decision tree์—์„œ i๋ฒˆ์งธ..

[Machine Learning] ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ• (Decision trees)

ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•(tree-based methods) Predictor ๊ณต๊ฐ„(space) -> ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋‹จ์ˆœํ•˜๊ณ  ์ž‘์€ ๊ณต๊ฐ„์œผ๋กœ ๊ณ„์ธตํ™”(stratify), ๋‚˜๋ˆ„๋Š”(segment) ๋ฐฉ๋ฒ• => Predictor ๊ณต๊ฐ„์„ ๋‚˜๋ˆ„๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ๋ถ„ํ•  ๊ทœ์น™์ด, ๋งˆ์น˜ ๋‚˜๋ฌด๊ฐ€ ๊ฐ€์ง€๋ฅผ ์น˜๋Š” ๊ฒƒ๊ณผ ์œ ์‚ฌํ•˜์—ฌ decision tree ๋ฐฉ๋ฒ• ์žฅ์  : ๋‹จ์ˆœํ•ด์„œ ํ•ด์„ํ•˜๊ธฐ ์‰ฌ์›€ ๋‹จ์  : Decision tree ๋ฐฉ๋ฒ•์€ ๋ณดํ†ต ๋‹ค๋ฅธ ์ง€๋„ํ•™์Šต ๋ฐฉ๋ฒ•๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์ข‹์ง€ ๋ชปํ•จ => ๋Œ€์•ˆ์œผ๋กœ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํŠธ๋ฆฌ๋ฅผ ๋งŒ๋“ค์–ด ์˜ˆ์ธก์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๋ฐฉ์‹์ธ bagging, random forests, boosting ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉ (๋‹จ, ์ด ๋ฐฉ๋ฒ•์€ ํ•ด์„๋ ฅ์ด ๋–จ์–ด์ง) Internal node(๋‚ด๋ถ€ ๋…ธ๋“œ) : ๊ธฐ์ค€์œผ๋กœ ๋น„๊ตํ•˜์—ฌ ์ขŒ์šฐ๋กœ ๋‚˜๋ˆ” Terminal node(ํ„ฐ๋ฏธ..

[Machine Learning] Subset selection๊ณผ ์ตœ์  ๋ชจ๋ธ ์„ ์ •

Subset selection (๋ถ€๋ถ„์ง‘ํ•ฉ ์„ ํƒ) p๊ฐœ์˜ predictor ์ค‘ response์™€ ๊ด€๋ จ๋œ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐ๋˜๋Š” predictor ์‹๋ณ„ ์‹๋ณ„๋œ p๊ฐœ ๋ณด๋‹ค ์ ์€ ์ˆ˜์˜ predictor๋งŒ์„ least squares ๋ฐฉ๋ฒ•์œผ๋กœ ์ ํ•ฉ Shrinkage (์ˆ˜์ถ•) p๊ฐœ์˜ predictor๋กœ ์ ํ•ฉํ•˜๋˜ coefficient ์ถ”์ • ๊ฐ’์ด 0์œผ๋กœ ์ž‘์•„์ง ์ •๊ทœํ™”(regularization)๋กœ๋„ ๋ถˆ๋ฆผ ๋ชจ๋ธ์˜ variance๋ฅผ ์ค„์ด๊ณ  ๋ณ€์ˆ˜๋ฅผ ์„ ํƒํ•˜๋Š” ํšจ๊ณผ๋ฅผ ๊ฐ€์ง Dimension Reduction (์ฐจ์› ์ถ•์†Œ) p๊ฐœ์˜ predictor๋ฅผ M์ฐจ์›์˜ subspace์— ํˆฌ์‚ฌํ•˜๋Š” ๋ฐฉ๋ฒ•(M < p) M๊ฐœ์˜ linear combination์„ ๋งŒ๋“ค์–ด๋‚ด ์„ ํ˜•ํšŒ๊ท€์˜ predictor๋กœ ์‚ฌ์šฉ ๋น„์ง€๋„ ํ•™์Šต ๋ฐฉ๋ฒ•์˜ ํ•˜๋‚˜ 01. Stepwise..